
FINAL 2012 Air Quality Management Plan

February 2013

FINAL 2012 AIR QUALITY MANAGEMENT PLAN

FEBRUARY 2013

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT GOVERNING BOARD

CHAIRMAN: WILLIAM A. BURKE, Ed.D.

Speaker of the Assembly Appointee

VICE CHAIR: DENNIS R. YATES

Mayor, Chino

Cities of San Bernardino

MEMBERS:

MICHAEL D. ANTONOVICH

Supervisor, Fifth District County of Los Angeles

JOHN J. BENOIT

Supervisor, Fourth District County of Riverside

MICHAEL A. CACCIOTTI

Councilmember, South Pasadena Cities of Los Angeles County/Eastern Region

JOSIE GONZALES

Supervisor, Fifth District San Bernardino County Representative

RONALD O. LOVERIDGE

Mayor, City of Riverside Cities Representative, Riverside County

JOSEPH K. LYOU, Ph.D.

Governor's Appointee

JUDITH MITCHELL

Mayor Pro Tem, Rolling Hills Estates Cities of Los Angeles County/Western Region

SHAWN NELSON

Supervisor, Fourth District County of Orange

DR. CLARK E. PARKER, Sr.

Senate Rules Appointee

JAN PERRY

Councilmember, Ninth District City of Los Angeles Representative

MIGUEL A. PULIDO

Mayor, Santa Ana Cities of Orange County

EXECUTIVE OFFICER:

BARRY R. WALLERSTEIN, D.Env.

CONTRIBUTORS

South Coast Air Quality Management District

Barry R. Wallerstein, D.Env. Executive Officer

Elaine Chang, DrPH
Deputy Executive Officer
Planning, Rule Development & Area Sources

Laki Tisopulos, Ph.D., P.E.
Assistant Deputy Executive Officer
Planning, Rule Development & Area Sources

Assistant Deputy Executive Officer Science and Technology Advancement

Henry Hogo

Joseph Cassmassi Planning and Rules Manager Planning, Rule Development & Area Sources Philip M. Fine, Ph.D.
Planning and Rules Manager
Planning, Rule Development & Area Sources

Authors

Jillian Baker, Ph.D. – Air Quality Specialist
Naveen Berry – Planning & Rules Manager
Shoreh Cohanim – Air Quality Specialist
Kevin Durkee – Senior Meteorologist
Ed Eckerle – Program Supervisor
Ali Ghasemi, P.E. – Program Supervisor
Tracy Goss, P.E. – Program Supervisor
Kathy Hsaio – Programs Supervisor
Aaron Katzenstein, Ph.D. – Program Supervisor

Michael Krause – Program Supervisor
Ian MacMillan – Program Supervisor
Victoria Moaveni – Senior Air Quality Engineer
Jean Ospital, Dr.PH – Health Effects Officer
Randall Pasek, Ph.D. – Planning & Rules Manager
Minh Pham, P.E. – Air Quality Specialist
Andrea Polidori, Ph.D. – Air Quality Specialist
Dean Saito – Fleet Implementation Manager

Contributors

Tom Chico – Program Supervisor

Bong-Mann Kim, Ph.D. – Air Quality Specialist
Jong Hoon Lee, Ph.D. – Air Quality Specialist
Sang-Mi Lee, Ph.D. – Air Quality Specialist
Arlene Martinez – Administrative Secretary

Jonathan Nadler – SCAG Department Manager Chris Nelson – Senior Staff Specialist Lisa Tanaka O'Malley – Community Relations Manager Susan Yan – Air Quality Specialist Xinqiu Zhang, Ph.D. – Air Quality Specialist

Reviewers

Barbara Baird, J.D. – District Counsel Carol Gomez – Planning & Rules Manager Peter Greenwald, J.D. – Senior Policy Advisor Michael Laybourn – Air Quality Specialist Chung Liu, D.Env. – Deputy Executive Officer Megan Lorenz, J.D. – Deputy District Counsel II Lauren Nevitt, J.D. – Deputy District Counsel II Patti Whiting – Staff Specialist

Production

Ryan Banuelos – Student Intern

SCAQMD Print Shop SCAQMD Graphics Department

Faye Thomas – Senior Administrative Secretary

ATTACHMENT A RESOLUTION NO. 13-1

A Resolution of the South Coast Air Quality Management District (AQMD or District) Governing Board to Adopt Control Measure IND-01 (Backstop Measure for Indirect Sources of Emissions from Ports and Port-Related Facilities) as revised for submittal into the California State Implementation Plan (SIP).

A Program Environmental Impact Report (EIR) for the 2012 Air Quality Management Plan (AQMP), which includes IND-01, was previously prepared and certified by the AQMD Governing Board as being completed in compliance with the California Environmental Quality Act (CEQA) on December 7, 2012; therefore no further action on the Program EIR is required.

WHEREAS, the Final 2012 AQMP, which included IND-01, was adopted by the AQMD Governing Board on December 7, 2012, with a motion to continue the hearing on the approval of Control Measure IND-01(Backstop Measure for Indirect Sources of Emissions from Ports and Port-Related Facilities) to the Governing Board's February 1, 2013 public meeting; and

WHEREAS, staff met with affected sources to address concerns raised and met with the Marine Port Committee on January 18, 2013, per Board directive, to discuss the intent and need for IND-01; and

WHEREAS, the South Coast Air Quality Management District is committed to comply with the requirements of the federal Clean Air Act; and

WHEREAS, the South Coast Air Quality Management District Governing Board is committed to comply with the requirements of the California Clean Air Act; and

WHEREAS, the South Coast Air Quality Management District Governing Board is committed to achieving healthful air in the South Coast Air Basin and all other parts of the District at the earliest possible date; and

WHEREAS, the Draft Final Socioeconomic Report on the 2012 AQMP, which included IND-01, was adopted by the Governing Board at the December 7, 2012 Public Hearing; and

WHEREAS, significant emission reductions, including those reductions achieved by the Ports and projected in the inventory, must be achieved

from sources under state and federal jurisdiction for the South Coast Air Basin to attain the federal air quality standards; and

WHEREAS, the record of the public hearing proceedings, including CEQA proceedings, is located at South Coast Air Quality Management District, 21865 Copley Drive, Diamond Bar, California 91765, and the custodian of the record is the Clerk of the Board; and

BE IT FURTHER RESOLVED, the District commits to continue working with the ports on the implementation of control measure IND-01 (Backstop Measure for Indirect Sources of Emissions from Ports and Port-Related Sources) as shown in Attachment 1.

BE IT FURTHER RESOLVED, the Governing Board finds and determines, taking into consideration the factors in §(d)(4)(D) of the Governing Board Procedures, that the modifications that have been made to IND-01, since the Final PEIR was certified by the Governing Board at the December 7, 2012 Public Hearing would not constitute significant new information within the meaning of the CEQA Guidelines; and

BE IT FURTHER RESOLVED, none of the modifications to the IND-01 alter any of the conclusions reached in the Final PEIR on the 2012 AQMP, nor provide new information of substantial importance that would require preparation of a subsequent CEQA document; and

BE IT FURTHER RESOLVED, that the South Coast Air Quality Management District Governing Board, pursuant to the requirements of Title 14 California Code of Regulations previously adopted Findings pursuant to §15091 and adopted the Statement of Overriding Considerations pursuant to §15093 at the December 7, 2012 Public Hearing; and

BE IT FURTHER RESOLVED, that the South Coast Air Quality Management District Governing Board previously adopted the Mitigation Monitoring and Reporting Plan, as required by Public Resources Code, at the December 7, 2012 Public Hearing; and

BE IT FURTHER RESOLVED, that the South Coast Air Quality Management District Governing Board, whose members reviewed, considered and approved the information contained in the document listed herein, adopts IND-01 or an alternative approach as amended by the final changes set forth by the AQMD Governing Board and the associated document listed in Attachment 1 to this Resolution.

BE IT FURTHER RESOLVED, that the South Coast Air Quality Management District Governing Board, requests that IND-01 be submitted into the SIP.

BE IT FURTHER RESOLVED, that the Executive Officer is hereby directed to forward a copy of this Resolution and IND-01 as amended by the final changes, to CARB, and to request that these documents be forwarded to the U.S. EPA for approval as part of the California State Implementation Plan. In addition, the Executive Officer is directed to forward any other information requested by the U.S. EPA for informational purposes.

AYES:

Burke, Cacciotti, Gonzales, Loveridge, Lyou, Parker, Pulido, and

Yates.

NOES:

Antonovich, Benoit, and Nelson.

ABSTAIN: None.

ABSENT:

Mitchell and Perry.

Dated: 2-1-2013

3

TABLE OF CONTENTS

ΕŽ	KECUTIVE SUMMARY	
	Introduction	ES-1
	Why Is This Final Plan Being Prepared?	
	Is Air Quality Improving?	ES-2
	How Did the Recent Recession Affecting Air Quality?	ES-8
	What Are the Major Sources Contributing to Air Quality Problems?	ES-8
	What is the Overall Control Strategy in the 2012 AQMP?	ES-9
	Why Not Request the Full 5-year Extenstion to Meet the 24-Hour PM2.5 Standard?	_ES-11
	Why and How is the 8-Hour Ozone Plan Being Updated?	_ES-11
	Given the Current Difficult & Uncertain Economic Condition, Should the District Wa	
	Before Adding Refined Control Commitments Into the SIP?	_ES-12
	Is the 2012 AQMP Being Coordinated with the State & Greenhouse Gas Reduction	
	Efforts?	_ES-12
l.	INTRODUCTION	
	Purpose	
	Constraints in Achieving Standards	
	Setting	
	Emission Sources	
	Population	
	The Recent Recession Control Efforts	
	History	
	Air Quality Impact of Control Efforts	
	Progress in Implementing the 2007 AQMP	
	District's Actions	
	CARB Actions	
	U.S. EPA Actions	
	Final 2012 AQMP	1-18
	Scope	1-18
	Approach	1-18
	Need for Integrated and Coordinated Planning	1-19
	Economic Considerations	1-20
	Federal CAA Planning Requirements Addressed by the Final 2012 AQMP	
	State Law Requirements Addressed by the Final 2012 AQMP	
	Format of This Document	1-24
2.	AIR QUALITY AND HEALTH EFFECTS	
•	Introduction	2-1
	Ambient Air Quality Standards	
	Federal and State Standards	
	NAAQS Attainment Status	

Current Air Quality	2-10
Particulate Matter (PM2.5 and PM10) Specific Information	2-13
Health Effects, Particulate Matter	
Air Quality, PM2.5	2-14
Air Quality, PM10	2-16
Ozone (O ₃) Specific Information	2-18
Health Effects, O ₃	2-18
Air Quality, O_3	2-18
Other Criteria Pollutants	
Carbon Monoxide (CO) Specific Information	
Health Effects, CO	2-21
Air Quality, CO	
Nitrogen Dioxide (NO ₂) Specific Information	
Health Effects, NO ₂	2-23
Air Quality, NO ₂	2-24
Sulfur Dioxide (SO ₂) Specific Information	
Health Effects, SO ₂	
Air Quality, SO ₂	
Sulfates (SO ₄ ²⁻) Specific Information	2-27
Health Effects, SO_4^{2-}	2-27
Air Quality, SO ₄ ²⁻	2-28
Lead (Pb) Specific Information	
Health Effects, Pb	2-29
Air Quality, Pb	2-29
Comparison to Other U.S. AreasSummary	
B. BASE YEAR & FUTURE EMISSIONS	
Introduction	
Emission Inventories	3-2
Stationary Sources	3-2
Mobile Sources	
On-Road	3-4
Off-Road	3-7
Uncertainty in the Inventory	3-11
Gridded Emissions	3-11
Base Year Emissions	3-12
2008 Emission Inventory	3-12
Future Emissions	
Data Development	
Summary of Baseline Emissions	
Impact of Growth	
Pre-Base-Year Offsets	
Top Ten Source Categories (2008, 2014, 2023)	
A CONTROL STRATEGY AND IMPLEMENTATION	
Introduction	4-1
Overall Attainment Strategy	4-1

24-Hour PM2.5 Strategy	4-4
Modeling Results	4-4
Sensitivity Analysis	4-5
Basin-wide Short Term PM2.5 Measures	4-5
8-hour Ozone Strategy	4-6
Proposed PM2.5 Short-term Control Measures	
Combustion Sources	4-9
PM Sources	
Multiple Component Sources	_ 4-12
Indirect Sources	_ 4-12
Educational Programs	_ 4-13
Proposed PM2.5 Contingency Measures	
SCAG's Regional Transportation Strategy and Transportation Control Measures	
Linking Regional Transportation Planning to Air Quality Planning	_ 4-15
Regional Transportation Strategy and Transportation Control Measures	_ 4-15
Reasonably Available Control Measures (RACM) Analysis	
Proposed 8-hour Ozone Measures	
Proposed Stationary Source 8-hour Ozone Measures	_ 4-21
Coatings and Solvents	_ 4-25
Combustion Sources	_ 4-26
Petroleum Operations and Fugitive VOC Emissions	_ 4-2/
Multiple Components Sources	
Incentive Programs	
Educational Programs	
Proposed Mobile Source 8-hour Ozone Measures	
On-Road Mobile Source MeasuresOff-Road Mobile Sources Measures	4-34 _ 1 35
Actions to Deploy Advanced Control Technologies	_ 4-33 1_35
District's SIP Emission Reduction Commitment	
SIP Emission Reduction Tracking	
Reductions from Adopted Rules	
Reductions from District's Stationary Source Control Measures	
Adoption and Implementation of District's Stationary Control Measure	
Adoption and Implementation of Alternative/Substitute Measures	
Overall Emission Reductions	
Implemenation	
Responsible Agencies	
FUTURE AIR QUALITY	
Introduction	5-1
Background	
Modeling Approach	5-2
Design Values and Relative Response Factors (RRF)	
Design Value Selection	5-2
RRF and Future Year Design Values	5-4
PM2.5 Modeling	5-5
24-Hour PM2.5 Modeling Approach	
Weight of Evidence	5-7

5.

24-Hour PM2.5	5-8
	5-8
Spatial Projections of PM2.5 Design values	5-9
Weight of Evidence Discussion	5-11
Control Strategy Choices	
Additional Modeling Analyses	5-15
Annual PM2.5	5-15
•	
Future Ozone Air Quality	5-21
Spatial Projections of 8-Hour Ozone Design Values	5-23
	6-1 6-1
Federal Air Quality Standards for Fine Particulates	6-1
·	
	6-5
- · ·	
Transportation Control Measures	6-13
California Clean Air Act Requirements	6-14
Plan Effectivess	6-14
Emission Reductions	6-16
Cost Effectivenes Ranking	6-17
Transportation Conformity Budgets	
	Additional Modeling Analyses Annual PM2.5 Annual PM2.5 Modeling Approach Future Annual PM2.5 Air Quality Ozone Modeling Ozone Representativeness Ozone Modeling Approach Future Ozone Air Quality Spatial Projections of 8-Hour Ozone Design Values A First Look at Attaining the 2006 8-Hour Ozone Standard Summary and Conclusions FEDERAL & STATE CLEAN AIR ACT REQUIREMENTS Introduction Specific 24-Hour PM2.5 Planning Requirements Federal Air Quality Standards for Fine Particulates Federal Clean Air Act Requirements Attainment Demonstration and Modeling Reasonable Further Progress (RFP) Reasonably Available Control Measures (RACM) and Reasonably Available Control Technology (RACT) Requirements New Source Review Contingency Measure Requirements Air Quality Improvement Scenario Magnitude of Contingency Measure Requirements Transportation Control Measures California Clean Air Act Requirements Plan Effectivess Emission Reductions Population Exposure Cost Effectivenes Ranking

	Other Criteria Pollutants	7-12
	Pollutant Transport	
	Emissions Inventories	
	Future Air Quality	
	Conclusions	
	Conclusions	/-10
8.	LOOKING BEYOND CURRENT REQUIREMENTS	0.1
	Introduction	
	Potential Changes in the Federal Ozone Standard	
	Implications of a New Ozone Standard for the Basin	
	1-Hour Ozone Requirements	
	Proposed Changes to the Federal Particulate Matter Standards	
	Implications of the Proposed New PM2.5 Standards for the Basin	8-6
9.	NEAR ROADWAY EXPOSURE AND ULTRAFINE PARTICLES	
	Introduction	
	Ultrafine Particles	9-4
	Formation and Transport	9-4
	Ambient Diurnal and Seasonal Variations	
	Concentration Levels in Different Environments	
	Chemical Composition	
	Measurement Methods	
	Other Near-roadway Pollutants	
	Ambient Measurements	
	Near Roadway Studies	9-12
	On-road Studies and In-Vehicle Exposure	9-15
	Important Factors Affecting Near-Roadway Measurements	9-17
	Health Effects	
	Ultrafine Particles	9-18
	Near-Roadway Health Impacts	9-21
	Future Research and Assessment Needs	9-22
	Chemical Composition	9-22
	Processes Leading to Formation	9-22
	Standardized Measurement Methods and Procedures	
	Increased Measurements at "Hot Spot" Locatins	9-23
	Emission Inventories	9-23
	Air Quality Modeling	
	Health Effects	
	Other Typles of Sources	
	Planning and Regulatory Issues	
	Jurisdiction over Near-Roadway Exposures	9-24
	Sustainable Community Strategies	9-25
	Enhanced Environmental Analysis	
	Mitigation Measures	
	Emission Control Technologies	
	Testing Protocols	9-30

Emission Standards	9-34
European Standards	9-34
California Standards	
National Standards	
District Future Actions	9-35
10. ENERGY AND CLIMATE	
Introduction	10-1
Energy Consumption Inventory and Projections	
Electricity Sources	
Basin Electricty Consumption	
Electricity Consumption by Sector	10-12
Recently Implemented State Regulations and Electricity Generation	
Natural Gas	
Transportation Fuels	
Efficiency Impacts on Energy Use	
Waste Heat Recovery	
Available Tools to Develop Projects	
Efficiency Incentives and Financing	
Southern California's Energy Future	
Transformation of the Energy Sector	10-24
11. PUBLIC PROCESS AND PARTICIPATION	
Introduction	11-1
Outreach Program	
Audience	
Format	
Outreach Activities	
Key Agency Coordination Meetings	
Local Stakeholder Meetings	
Topical Workshops	
Focus Groups	
Peer Review	
General Public Outreach	
Outreach Results_	
Summary of Outreach Activities	11-/

GLOSSARY

HEALTH EFFECTS APPENDIX I APPENDIX II **CURRENT AIR QUALITY** APPENDIX III BASE AND FUTURE YEAR EMISSION INVENTORY APPENDIX IV-A DISTRICT'S STATIONARY SOURCE CONTROL MEASURES APPENDIX IV-B PROPOSED 8-HOUR OZONE MEASURES APPENDIX IV-C REGIONAL TRANSPORTATION STRATEGY AND CONTROL **MEASURES** APPENDIX V MODELING AND ATTAINMENT DEMONSTRATIONS APPENDIX VI REASONABLY AVAILABLE CONTROL MEASURES (RACM) **DEMONSTRATION** 2012 1-HOUR OZONE ATTAINMENT DEMONSTRATION APPENDIX VII APPENDIX VIII DEMONSTRATION OF OFFSET OF GROWTH IN EMISSIONS ASSOCIATED WITH GROWTH IN VEHICLE MILES TRAVELED UNDER SECTION 182(D)(1)(A) OF THE FEDERAL **CLEAN AIR ACT**

PREFACE

The 2012 AQMP represents a regional blueprint for achieving healthful air on behalf of the 16 million residents of the South Coast Basin.

The air quality challenges are great, the stakes are high...and the legal deadlines loom sooner than most people realize.

STEADY PROGRESS AND MOMENTUM

The primary task of the 2012 AQMP is to bring our Basin into attainment with federal health-based standards for unhealthful fine particulate matter (PM2.5) by 2014. Yet to have any reasonable expectation of meeting the 2023 ozone deadline, the scope and pace of continued air quality improvement must greatly intensify.

- Regulatory frameworks to reduce unhealthful emissions are mostly pollutant-specific, focusing on
 one pollutant at a time to meet clean air standards. However, outdoors, people inhale pollutants as a
 mixture, and the chemical interactions of multiple pollutants are complex. For this reason, each
 AQMP is also a comprehensive plan that examines multiple pollutants and the most up-to-date
 scientific knowledge, in order to achieve the greatest air quality and health benefits for Southland
 residents while also balancing factors of cost and available funding.
- The 2012 AQMP is a critical opportunity to re-sharpen our approach to achieve both breathable air and a healthier, revitalized economic future. Fuel combustion for goods movement, transportation, and energy is the major cause of our worst-in-the-nation ozone problem, while strategies for climate protection that reduce fuel use & energy consumption also have corresponding air quality benefits for everyone in the Southland region.

ECONOMIC SENSITIVITY

The District remains sensitive to our region's slow recovery from recession, while retaining the precept that healthful air is not a luxury, but a right. Therefore the 2012 AQMP seeks to maintain steady momentum along a dollar-wise path - - one that will reduce near-term public health expenses and lay a long-term foundation for more livable, energy-efficient communities and open additional economic opportunities.

• Wherever possible, the plan seeks to identify solutions that can solve multiple problems from focused investments and clean-technology incentives. Also, a number of the proposed measures are voluntary incentives and/or education programs that encourage innovation and early adoption. In addition, the District, the California Air Resources Board (CARB), and fellow non-attainment district San Joaquin Valley have engaged in a major effort to collaborate on concepts for combined clean air gains and more efficient energy production & usage, especially in transportation - - in a coordinated manner.

COLLABORATIVE, SYNERGISTIC EFFORTS

Key to timely implementation of the 2012 AQMP will be coordinated, integrated planning efforts among local, regional, state, and federal entities, together with effective public-private partnerships; and continuing active participation by stakeholders including community health groups, academic, research, & training institutions, and experts in advanced near-zero and zero-emission technologies, especially as related to advanced goods movement technologies.

• Recent years have seen co-funded projects among entities including SCAQMD, U.S. EPA, U.S. DOE, CARB, CEC, metropolitan planning organizations (such as SCAG), Clean Cities affiliates, Councils of Government, major OEMS, utility providers, goods movement authorities, and even international environmental consortiums. These efforts have been an important first step - - but the time for redoubled commitment by all parties is **now**.

