Field Evaluation Atmocube

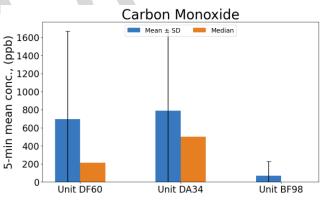
AQ-SPEC
Air Quality Sensor Performance Evaluation Center

Background

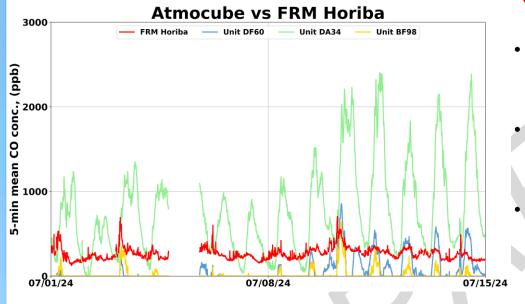
- From 06/14/2024 to 08/14/2024, three **Atmocube** multi-sensor units were deployed at the South Coast AQMD stationary ambient monitoring site in Rubidoux and were run side-by-side with Federal Equivalent Method (FEM) and Federal Reference Method (FRM) instruments measuring the same pollutants.
- Atmocube (3 units tested):
 - ➤ Gas Sensors: Electrochemical (ECSENSE ES1, non-FEM)
 - ➤ PM: Optical (Sensirion SPS30, non-FEM)
 - Each unit measures: CO (ppm), O₃ (ppm), PM_{1.0} (μg/m³), PM_{2.5} (μg/m³), PM₁₀ (μg/m³), T (°C), RH (%)
 - ➤ Unit cost: \$800
 - > Time resolution: 1-min
 - ➤ Units IDs: DF60, DA34, and BF98

South Coast AQMD Reference instruments:

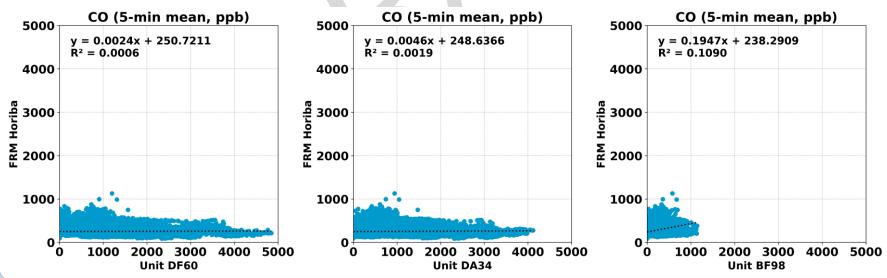
- ➤ O₃ instrument (Teledyne T400, hereinafter FEM T400); cost: ~\$7,000
 - > Time resolution; 1-min
- ➤ CO instrument (Horiba APMA 370, hereinafter FRM Horiba); cost: ~\$10,000
 - ➤ Time resolution; 1-min
- ➤ PM instrument (Teledyne API T640; FEM PM_{2.5}, hereinafter FEM T640); cost: \$21,000
 - > Time resolution: 1-min
 - ightharpoonup Measures PM_{1.0}, PM_{2.5}, PM₁₀ (μ g/m³)
- PM instrument (MetOne BAM; FEM PM_{2.5} & PM₁₀); cost: \$20,000
 - > Time resolution: 1-hr
 - \triangleright Measures PM_{2.5}, PM₁₀ (µg/m³)
- ➤ Met station (T, RH, P, WS, WD); cost: ~\$5,000
 - > Time resolution: 1-min

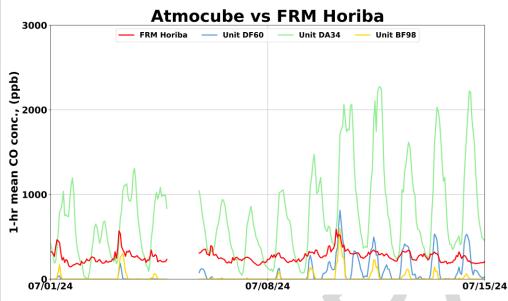

Carbon Monoxide (CO) in Atmocube

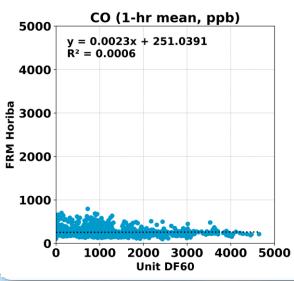
Data validation & recovery

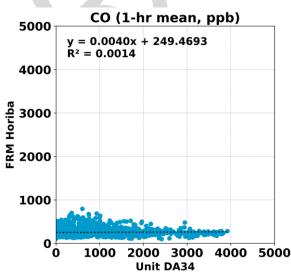

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for CO from Unit DF60, Unit DA34 and Unit BF98 was ~100%
- Data related to 4th of July activities were excluded from data analysis for all sensors and reference instruments

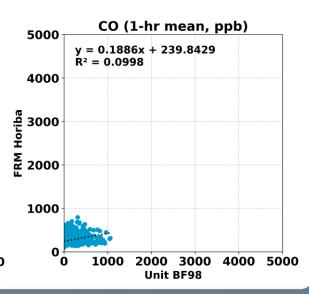
Atmocube; Intra-model variability

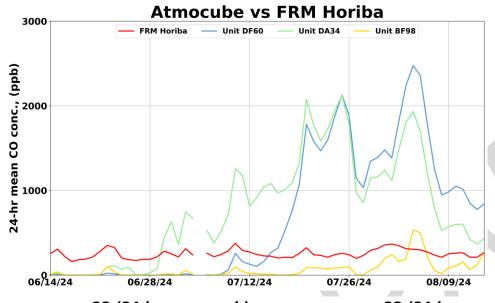

- Absolute intra-model variability was ~391.7 ppb for the CO measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~75.6% for the CO measurements
 (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

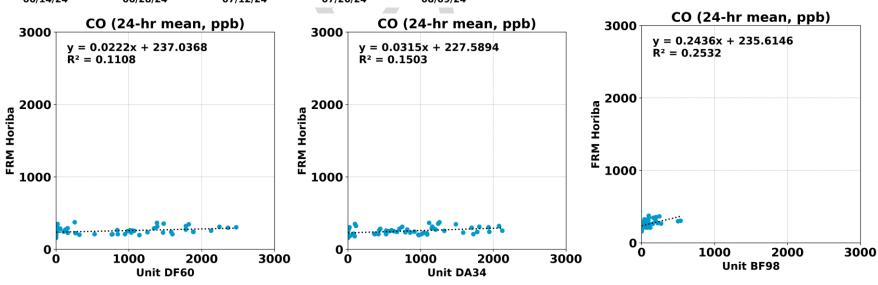

Atmocube vs FRM Horiba (CO; 5-min mean)


- The Atmocube sensors showed no to very weak correlation with the corresponding FRM Horiba CO data (0.0 < R² < 0.11)
- Overall, the Atmocube sensors overestimated the CO concentration as measured by the FRM Horiba CO instrument
- The Atmocube sensors did not seem to track the diurnal CO variations as recorded by the FRM Horiba instrument




Atmocube vs FRM Horiba (CO; 1-hr mean)


- The Atmocube sensors showed no correlation with the corresponding FRM Horiba CO data (0.0 < R² < 0.1)
- Overall, the Atmocube sensors overestimated the CO concentration as measured by the FRM Horiba CO instrument
- The Atmocube sensors did not seem to track the diurnal CO variations as recorded by the FRM Horiba instrument



Atmocube vs FRM Horiba (CO; 24-hr mean)

- The Atmocube sensors showed very weak correlation with the corresponding FRM Horiba CO data (0.11 < R² < 0.26)
- Overall, the Atmocube sensors overestimated the CO concentration as measured by the FRM Horiba CO instrument
- The Atmocube sensors did not seem to track the daily CO variations as recorded by the FRM Horiba instrument

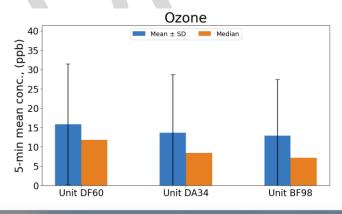
Summary: CO

	Average of 3 Sensors, CO		Atmocube vs FRM Horiba, CO							FRM Horiba, CO (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FRM Horiba Average	FRM Horiba SD	Range during the field evaluation	
5-min	518.3	669.3	0.0 to 0.11	0.0 to 0.19	238.3 to 250.7	-179.7 to 572.2	218.2 to 699.2	239.1 to 1098.0	252.5	95.0	87.9 to 1128.0	
1-hr	518.5	666.8	0.0 to 0.1	0.0 to 0.19	239.8 to 251.0	-184.9 to 532.7	220.0 to 662.0	239.5 to 1057.2	252.6	91.8	99.4 to 793.5	
24-hr	517.9	505.0	0.11 to 0.25	0.02 to 0.24	227.6 to 237.0	-183.3 to 536.8	197.4 to 652.5	204.8 to 872.6	252.5	51.6	158.9 to 375.1	

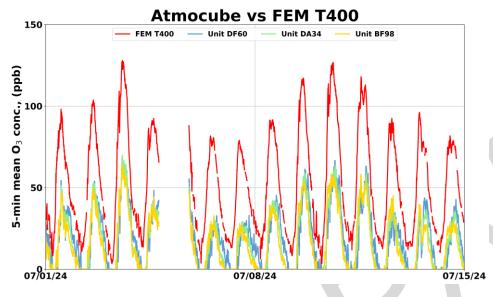
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

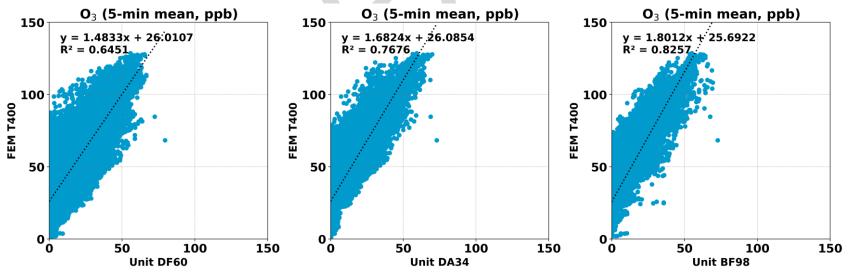
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

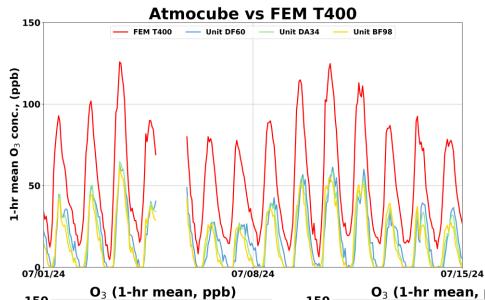

Ozone (O₃) in Atmocube

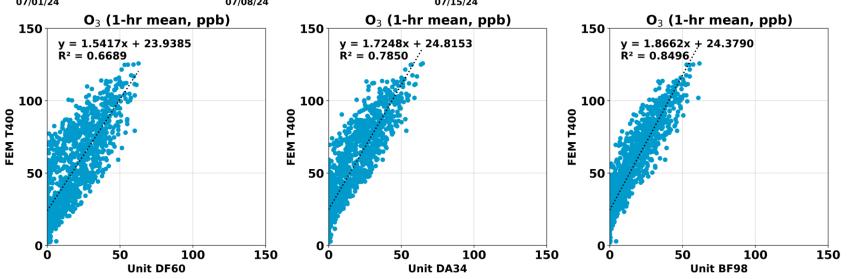
Data validation & recovery

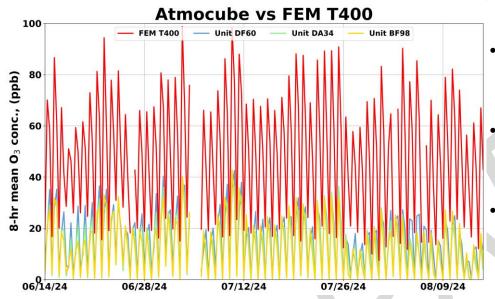

- Basic QA/QC procedures were used to validate the collected data (i.e., obvious outliers, negative values, and invalid data-points were eliminated from the data-set)
- Data recovery for O₃ from Unit DF60, Unit DA34 and Unit BF98 was ~100%
- Data related to 4th of July activities were excluded from data analysis for all sensors and reference instruments

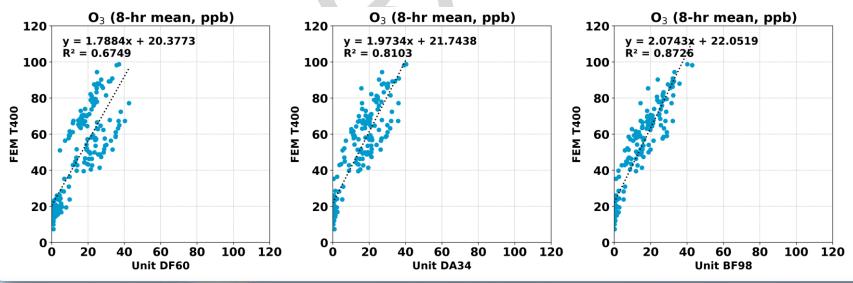
Atmocube; Intra-model variability


- Absolute intra-model variability was ~1.5 ppb for the ozone measurements (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was ~10.6% for the ozone measurements
 (calculated as the absolute intra-model variability relative to the mean of the three sensor means)


Atmocube vs FEM T400 (Ozone; 5-min mean)


- The Atmocube sensors showed moderate to strong correlation with the corresponding FEM T400 ozone data (0.64 < R² < 0.83)
- Overall, the Atmocube sensors underestimated the ozone concentration as measured by the FEM T400 ozone instrument
- The Atmocube sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument


Atmocube vs FEM T400 (Ozone; 1-hr mean)


- The Atmocube sensors showed moderate to strong correlation with the corresponding FEM T400 ozone data (0.66 < R² < 0.85)
- Overall, the Atmocube sensors underestimated the ozone concentration as measured by the FEM T400 ozone instrument
- The Atmocube sensors seemed to track the diurnal ozone variations as recorded by the FEM T400 instrument

Atmocube vs FEM T400 (Ozone; 8-hr mean)

- The Atmocube sensors showed moderate to strong correlation with the corresponding FEM T400 ozone data (0.67 < R² < 0.88)
- Overall, the Atmocube sensors underestimated the ozone concentration as measured by the FEM T400 ozone instrument
- The Atmocube sensors seemed to track the daily ozone variations as recorded by the FEM T400 instrument

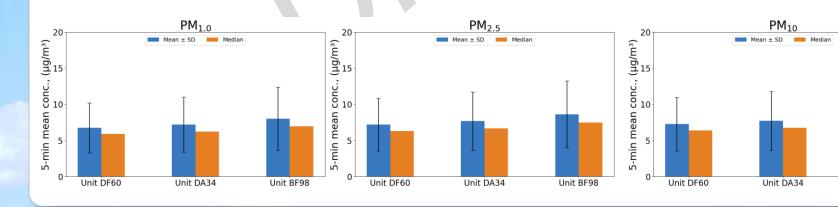
Summary: Ozone

	Average of 3 Sensors, Ozone		Atmocube vs FEM T400, Ozone						FEM T400, Ozone (ppb)		
	Average (ppb)	SD (ppb)	R ²	Slope	Intercept	MBE ¹ (ppb)	MAE ² (ppb)	RMSE ³ (ppb)	FEM T400 Average	FEM T400 SD	Range during the field evaluation
5-min	14.1	15.1	0.65 to 0.83	1.48 to 1.80	25.7 to 26.1	-36.7 to -34.0	34.0 to 36.7	39.0 to 40.5	50.4	29.4	1.5 to 128.6
1-hr	14.1	14.8	0.67 to 0.85	1.54 to 1.87	23.9 to 24.8	-35.5 to -32.5	32.5 to 35.5	37.5 to 39.2	48.4	29.0	2.0 to 125.8
8-hr	14.0	11.2	0.67 to 0.87	1.79 to 2.07	20.4 to 22.1	-35.7 to -32.7	32.7 to 35.7	36.7 to 38.6	48.3	24.6	7.4 to 98.7

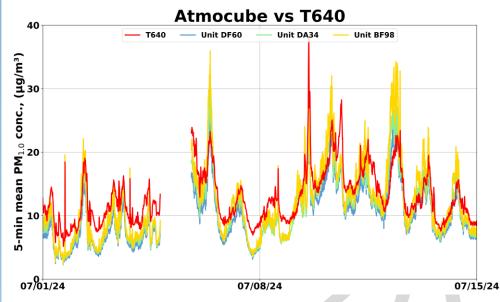
¹ Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.

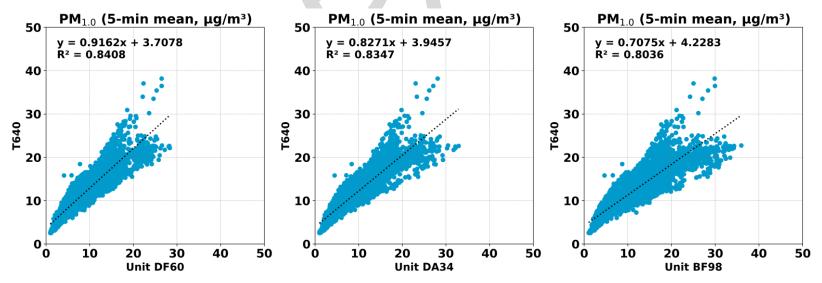
³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

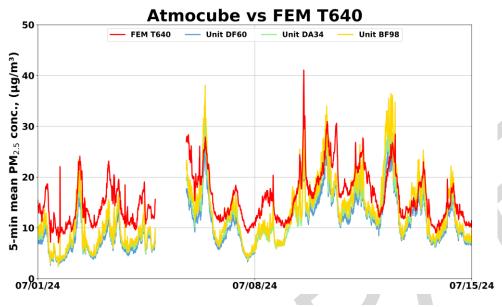

Particulate Matter (PM) in Atmocube

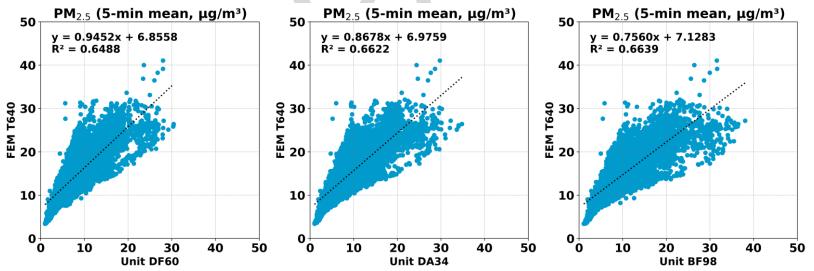
Data validation & recovery

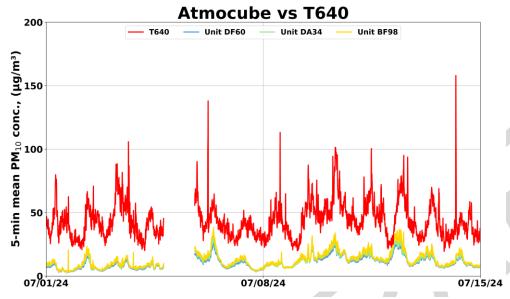

- Basic QA/QC procedures were used to validate the collected data (i.e. obvious outliers, negative values and invalid data-points were eliminated from the data-set)
- Data recovery from Unit DF60, Unit DA34 and Unit BF98 was ~97.5%, 100% and 100% for all PM measurements
- Data related to 4th of July activities were excluded from data analysis for all sensors and reference instruments

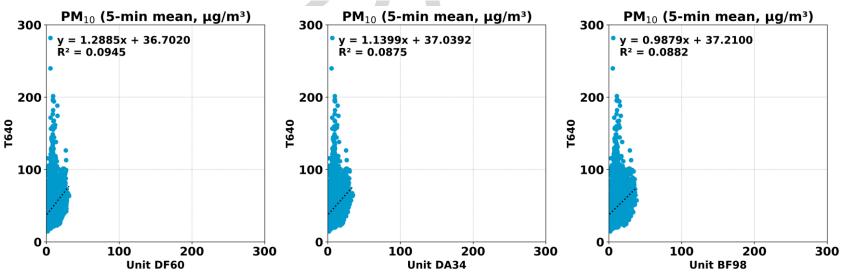
Atmocube; intra-model variability

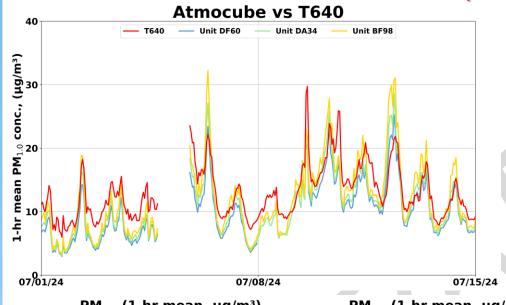

- Absolute intra-model variability was ~0.6, ~0.7 and ~0.8 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the standard deviation of the three sensor means)
- Relative intra-model variability was \sim 8.8%, \sim 9.2% and \sim 9.6% for PM_{1.0}, PM_{2.5} and PM₁₀, respectively (calculated as the absolute intra-model variability relative to the mean of the three sensor means)

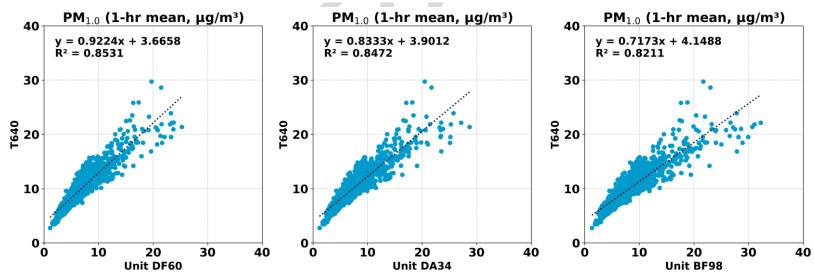

Atmocube vs T640 ($PM_{1.0}$; 5-min mean)

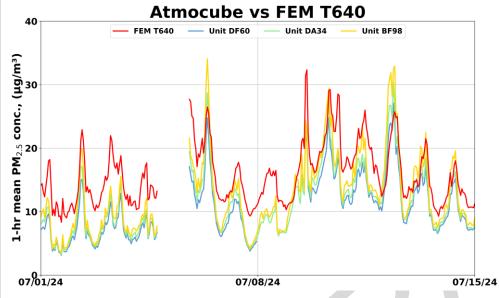

- The Atmocube sensors showed strong correlations with the corresponding T640 data (0.80 < R² < 0.85)
- Overall, the Atmocube sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Atmocube sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

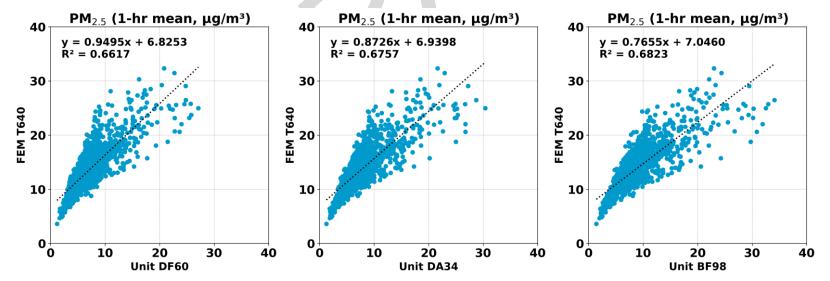

Atmocube vs FEM T640 (PM_{2.5}; 5-min mean)

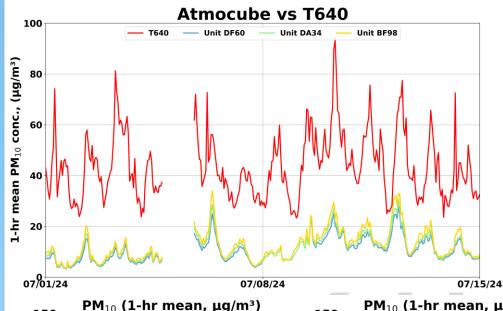

- The Atmocube sensors showed moderate correlations with the corresponding FEM T640 data (0.64 < R² < 0.67)
- Overall, the Atmocube sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Atmocube sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

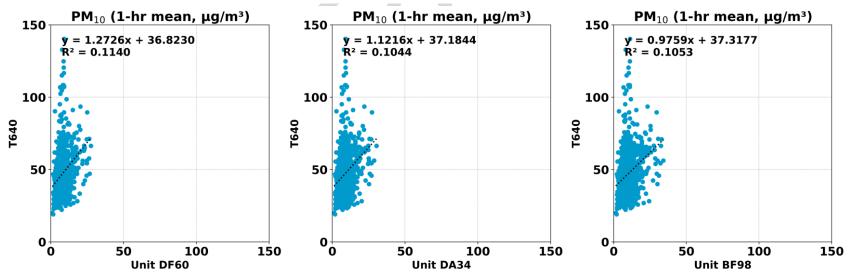

Atmocube vs T640 (PM₁₀; 5-min mean)

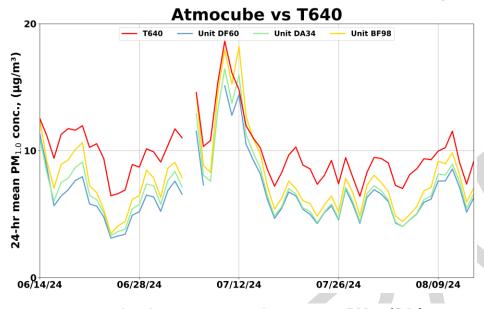

- The Atmocube sensors showed no correlations with the corresponding T640 data (0.08 < R² < 0.10)
- Overall, the Atmocube sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Atmocube sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640

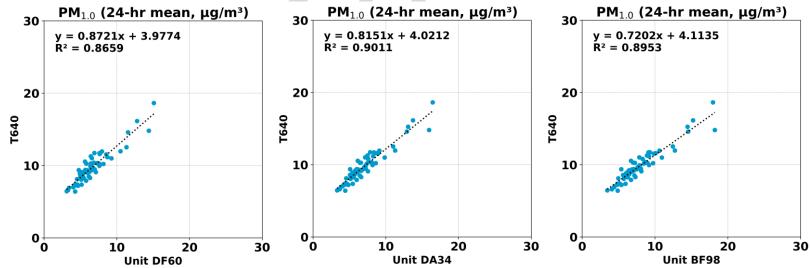

Atmocube vs T640 ($PM_{1.0}$; 1-hr mean)

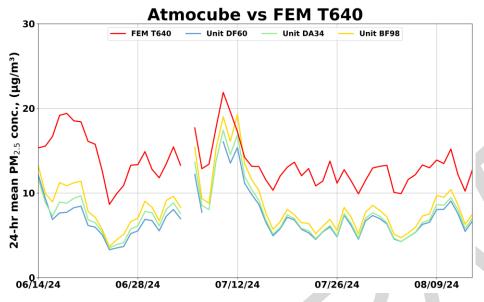

- The Atmocube sensors showed strong correlations with the corresponding T640 data (0.82 < R² < 0.86)
- Overall, the Atmocube sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Atmocube sensors seemed to track the PM_{1.0} diurnal variations as recorded by T640

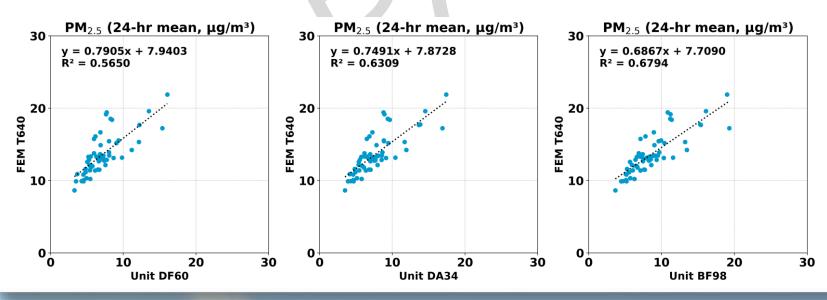

Atmocube vs FEM T640 (PM_{2.5}; 1-hr mean)

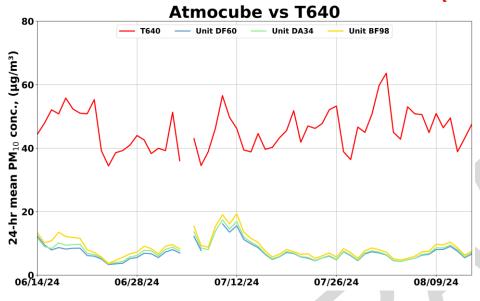

- The Atmocube sensors showed moderate correlations with the corresponding FEM T640 data (0.66 < R² < 0.69)
- Overall, the Atmocube sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Atmocube sensors seemed to track the PM_{2.5} diurnal variations as recorded by FEM T640

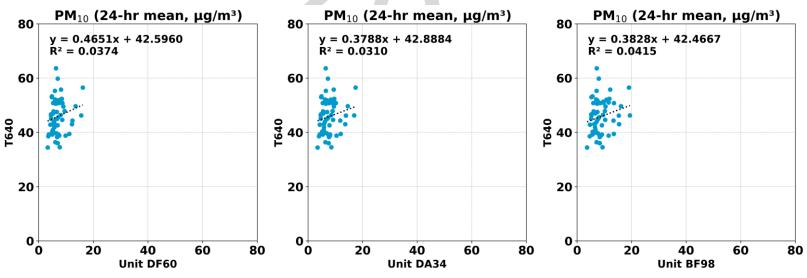

Atmocube vs T640 (PM_{10} ; 1-hr mean)


- The Atmocube sensors showed very weak correlations with the corresponding T640 data (0.10 < R² < 0.12)
- Overall, the Atmocube sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Atmocube sensors did not seem to track the PM₁₀ diurnal variations as recorded by T640


Atmocube vs T640 ($PM_{1.0}$; 24-hr mean)


- The Atmocube sensors showed strong to very strong correlations with the corresponding T640 data (0.86 < R² < 0.91)
- Overall, the Atmocube sensors underestimated the PM_{1.0} mass concentrations as measured by T640
- The Atmocube sensors seemed to track the PM_{1.0} daily variations as recorded by T640


Atmocube vs FEM T640 (PM_{2.5}; 24-hr mean)

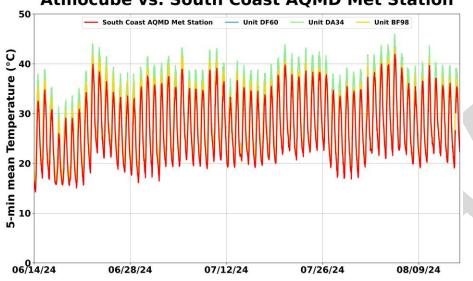

- The Atmocube sensors showed moderate correlations with the corresponding FEM T640 data (0.56 < R² < 0.68)
- Overall, the Atmocube sensors underestimated the PM_{2.5} mass concentrations as measured by FEM T640
- The Atmocube sensors seemed to track the PM_{2.5} daily variations as recorded by FEM T640

Atmocube vs T640 (PM₁₀; 24-hr mean)

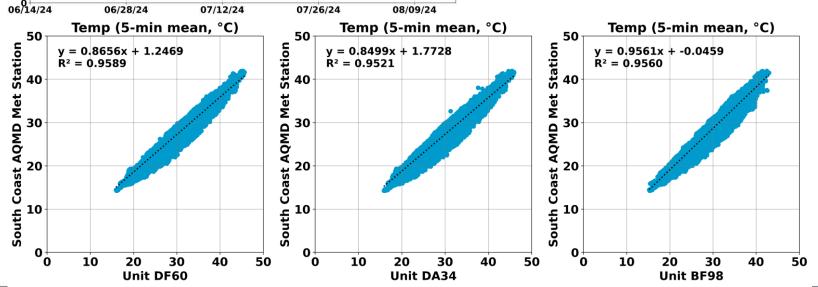
- The Atmocube sensors showed no correlations with the corresponding T640 data (0.03 < R² < 0.05)
- Overall, the Atmocube sensors underestimated the PM₁₀ mass concentrations as measured by T640
- The Atmocube sensors did not seem to track the PM₁₀ daily variations as recorded by T640

Summary: PM

₹											
	Average Sensors,		Atmocube vs T640, PM _{1.0}						T640 (PM _{1.0} , μg/m³)		
	Average (μg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (µg/m³)	MAE ² (μg/m ³)	RMSE ³ (μg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.4	3.9	0.80 to 0.84	0.71 to 0.92	3.7 to 4.2	-3.1 to -1.9	2.4 to 3.2	2.7 to 3.4	9.9	3.4	2.5 to 38.2
1-hr	7.4	3.8	0.82 to 0.85	0.72 to 0.92	3.7 to 4.1	-3.1 to -1.9	2.3 to 3.2	2.6 to 3.4	9.9	3.4	2.8 to 29.7
24-hr	7.3	2.8	0.87 to 0.90	0.72 to 0.87	4.0 to 4.1	-3.1 to -1.9	2.0 to 3.1	2.2 to 3.3	9.9	2.4	6.4 to 18.6
	Average of 3 Sensors, PM _{2.5}			Atmocube vs FEM T640, PM _{2.5}					FEM T640 (PM _{2.5} , µg/m³)		
	Average (µg/m³)	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (µg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.9	4.1	0.65 to 0.66	0.76 to 0.95	6.9 to 7.1	-6.5 to -5.0	5.3 to 6.5	5.7 to 6.9	13.7	4.3	3.4 to 41.1
1-hr	7.9	4.0	0.66 to 0.68	0.77 to 0.95	6.8 to 7.0	-6.5 to -5.0	5.2 to 6.5	5.6 to 6.9	13.7	4.2	3.6 to 32.3
24-hr	7.8	3.0	0.57 to 0.68	0.69 to 0.79	7.7 to 7.9	-6.5 to -5.0	5.1 to 6.5	5.3 to 6.7	13.6	2.8	8.6 to 21.9
	Average of 3 Sensors, PM ₁₀			Atmocube vs T640, PM ₁₀					T640 (PM ₁₀ , μg/m ³)		
	Average	SD (µg/m³)	R ²	Slope	Intercept	MBE ¹ (μg/m³)	MAE ² (μg/m ³)	RMSE ³ (μg/m ³)	Ref. Average	Ref. SD	Range during the field evaluation
5-min	7.9	4.1	0.09	0.99 to 1.29	36.7 to 37.2	-38.8 to -37.1	37.1 to 38.8	40.0 to 41.5	45.9	15.5	14.6 to 281.8
1-hr	7.9	4.1	0.10 to 0.11	0.98 to 1.27	36.8 to 37.3	-38.8 to -37.1	37.1 to 38.8	39.3 to 40.9	45.9	13.8	19.1 to 140.3
24-hr	7.9	3.0	0.03 to 0.04	0.38 to 0.47	42.5 to 42.9	-38.8 to -37.1	37.1 to 38.8	37.6 to 39.3	45.8	6.4	34.4 to 63.6

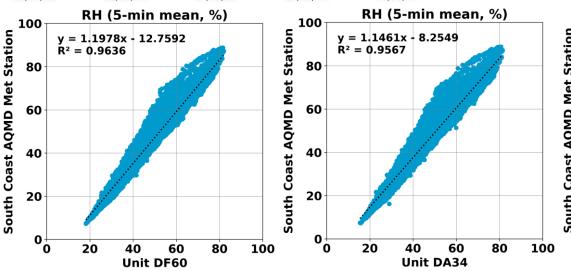

¹Mean Bias Error (MBE): the difference between the sensors and the reference instruments. MBE indicates the tendency of the sensors to underestimate (negative MBE values) or overestimate (positive MBE values).

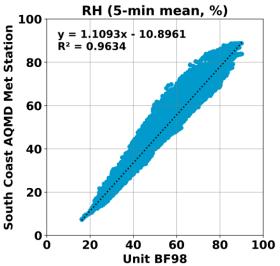
² Mean Absolute Error (MAE): the absolute difference between the sensors and the reference instruments. The larger MAE values, the higher measurement errors as compared to the reference instruments.


³ Root Mean Square Error (RMSE): another metric to calculate measurement errors.

Atmocube vs South Coast AQMD Met Station (Temp; 5-min mean)


Atmocube vs. South Coast AQMD Met Station


- The Atmocube sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.95 < R² < 0.96)
- Overall, the Atmocube sensors overestimated the temperature measurement as recorded by South Coast AQMD Met Station
- The Atmocube sensors seemed to track the diurnal temperature variations as recorded by South Coast AQMD Met Station



Atmocube vs South Coast AQMD Met Station (RH; 5-min mean)

- Atmocube sensors showed very strong correlations with the corresponding South Coast AQMD Met Station data (0.95 < R² < 0.97)
- Overall, the Atmocube sensors overestimated the RH measurement as recorded by South Coast AQMD Met Station
- The Atmocube sensors seemed to track the diurnal RH variations as recorded by South Coast AQMD Met Station

Discussion

- The three **Atmocube** sensors' data recovery for CO, O₃, and all PM fractions was ~100%, ~100%, and ~99.2%, respectively.
- The absolute intra-model variability for CO and O_3 was ~391.7 ppb and ~1.5 ppb respectively. Absolute intra-model variability was ~0.6, ~0.7 and ~0.8 μ g/m³ for PM_{1.0}, PM_{2.5} and PM₁₀, respectively
- During the <u>entire</u> field deployment testing period:
 - ➤ CO sensors showed no to very weak correlation with the FRM Horiba instrument (0.0 < R² < 0.11, 5-min mean) and generally overestimated the corresponding FRM Horiba data
 - > Ozone sensors showed moderate to strong correlation with the FEM T400 instrument (0.64 < R² < 0.83, 5-min mean) and generally underestimated the corresponding FEM T400 data
 - The Atmocube sensors showed strong correlations with the corresponding T640 PM_{1.0} data (0.82 < R² < 0.86, 1-hr mean), moderate correlations with the corresponding FEM T640 PM_{2.5} data (0.66 < R² < 0.69, 1-hr mean) and very weak correlations with the corresponding T640 reference PM₁₀ data (0.10 < R² < 0.12; 1-hr mean). The sensors underestimated PM_{1.0}, PM_{2.5} and PM₁₀ mass concentrations as measured by the reference instruments
 - ➤ Temperature and relative humidity sensors showed very strong correlations with the South Coast AQMD Met Station T and RH data, respectively (R² ~ 0.95 for T and R² ~ 0.96 for RH) and overestimated both the T and RH data as recorded by the South Coast AQMD Met Station
- No sensor calibration was performed by South Coast AQMD staff for this evaluation.
- Laboratory chamber testing is necessary to fully evaluate the performance of these sensors under controlled T and RH conditions, and known target and interferent pollutants concentrations.
- These results are still preliminary