GOODS MOVEMENT WHITE PAPER

DRAFT - August 5, 2014

TABLE OF CONTENTS

I. INTRODUCTION

- 1. Purpose and Objective
- 2. Document Outline

II. BACKGROUND

- 1. The regional goods movement system today
 - General description
 - Importance to Region's Economy
- 2. Air quality impacts of goods movement
 - Regional
 - Local
- 3. Emission reduction progress to date
- 4. Attainment challenge
 - Regional emissions by source category in attainment deadline years
 - Regional emission reductions needed to attain NAAQS, and general implications for goods movement
 - Focus on NOx
- 5. Climate connection
- 6. Other goods movement planning efforts
 - CARB Sustainable Freight Strategy
 - Caltrans Freight Mobility Plan
 - SCAG Regional Transportation Plan
 - San Pedro Bay Ports Clean Air Action Plan
 - Federal Surface Transportation Legislation
 - Other

III. Goods Movement Sources, Criteria Pollutant Emissions, Emission Control Programs

- 1. On-Road Trucks
- 2. Marine Vessels
- 3. Locomotives
- 4. Aircraft
- 5. Cargo Handling Equipment
- 6. Commercial Harbor Craft

IV. Potential Emission Reduction Technologies and Efficiency Measures

- 1. Overview: types of technologies and efficiency measures; potential NOx reduction percentages; toxics and GHG co-benefits
 - Aftertreatment and engine modifications
 - Alternative fuels and power
 - Combinations (e.g. alt fuels with advanced aftertreatment/hybridization)
 - Efficiency measures
- 2. Specific source categories: measures and potential emission reduction percentages
 - On-Road Trucks
 - Aftertreatment and engine modifications
 - SCR, DPF (generally implemented already)
 - Alternative fuels and power
 - Natural gas, LNG, biofuels, hydrogen blending, etc.
 - BEV, hybrid-electric, PHEV, hybrids with zero emission miles, fuel cells, catenary, etc.
 - Combinations
 - alt fuel-electric hybrids, alt fuels with advanced aftertreatment
 - Efficiency measures
 - Intelligent transportation systems, on-dock railyards, etc.
 - Oceangoing Vessels
 - Aftertreatment and engine modifications
 - IMO Tier 3, EGR, water scrubbing, etc.
 - At-berth emissions capture and control
 - Fuels and power
 - LNG, emulsified fuels etc
 - Shore power
 - Efficiency measures
 - Heat Recovery Systems

- New Hull Designs
- Slow Steaming, etc.

Locomotives

- Aftertreatment and engine modifications
 - Tier 4
- Fuels and power
 - Catenary electric, hybrid-electric, battery tender car, LNG, etc.
- Combinations
 - LNG with advanced aftertreatment, etc.
- Efficiency measures

Cargo Handling Equipment

- Aftertreatment and engine modifications
 - SCR, DPF etc (generally implemented already)
- Fuels and power
 - Natural gas, LNG, biofuels, hydrogen blending, etc.
 - BEV, hybrid-electric, PHEV, hybrids with zero emission miles, fuel cells, etc.
- Efficiency measures
 - Wide-span gantry cranes, etc.

Harbor Craft

- Aftertreatment and engine modifications
 - SCR, DPF, etc.
- Fuels and power
 - Hybrid-electric, LNG, biofuels
- Efficiency measures
 - New Hull Designs, etc.

Aircraft Engines

- Engine modifications
 - New Engine Development to Meet ICAO/ U.S. EPA Emission Standards
 - New Engine Research FAA CLEEN Program
- Fuels and power
 - Biofuels, Fuel Cell Technologies
- Efficiency measures
 - Wing and Hull Designs
 - LTO Operations, etc.

- Ground Service Equipment
 - Aftertreatment and engine modifications
 - SCR, DPF, etc.
 - Fuels and power
 - Electrification, Hybrid-electric, Alternative fuels, biofuels
 - Efficiency measures
- 3. System-wide Efficiency
 - Intelligent Transportation Systems, etc.

V. NOx Emissions Reduction Scenarios

Potential approaches:

- 1) Working Back from Attainment Determine emission reductions for each source category needed to attain regional NOx carrying capacities in attainment deadline years.
 - At least one scenario would assume even distribution of emission control obligations across source categories; other scenarios would modify that distribution based on factors relating to feasibility.
 - Various scenarios could be designed to achieve specific purposes, e.g. minimize needed technology changes between 2023 and 2032 attainment deadlines, or illustrate emission tradeoffs between various penetration rates
- 2) <u>Looking Forward</u> Assume a range of performance standards and deployment rates, and project emissions in attainment deadline years.

VI. NOx Emissions Reduction Scenario Assessment

- 1. Aggregate potential reductions, and adequacy to meet attainment needs
 - Preliminary discussion of extent each scenario has potential for—
 - business case
 - co-benefits for toxics, GHG, energy, mobility, local economy
 - Preliminary discussion of implementation challenges for each scenario,
 e.g.—
 - technology feasibility
 - cost
 - infrastructure needs
 - operational impacts

VII. Recommended Actions

- 1. Studies
- 2. Technology development and demonstration
- 3. Foster clean technology markets and technology deployment
 - Outreach, funding, incentives, project conditions, regulations
- 4. Infrastructure
 - Alternative Fuels
 - Electricity Generation/Charging
 - Transportation (Roads, etc.)
- 5. Funding
 - Public and private investments
- 6. Federal Assistance
- 7. Interagency Coordination
- 8. Public/Private Partnerships
- 9. Additional Recommendations??

References

Appendices